Vehicle Routing and Adaptive Iterated Local Search within the HyFlex Hyper-heuristic Framework
نویسندگان
چکیده
HyFlex (Hyper-heuristic Flexible framework) [15] is a software framework enabling the development of domain independent search heuristics (hyper-heuristics), and testing across multiple problem domains. This framework was used as a base for the first Cross-domain Heuristic Search Challenge, a research competition that attracted significant international attention. In this paper, we present one of the problems that was used as a hidden domain in the competition, namely, the capacitated vehicle routing problem with time windows. The domain implements a data structure and objective function for the vehicle routing problem, as well as many state-ofthe-art low-level heuristics (search operators) of several types. The domain is tested using two adaptive variants of a multiple-neighborhood iterated local search algorithm that operate in a domain independent fashion, and therefore can be considered as hyper-heuristics. Our results confirm that adding adaptation mechanisms improve the performance of hyper-heuristics. It is our hope that this new and challenging problem domain can be used to promote research within hyper-heuristics, adaptive operator selection, adaptive multi-meme algorithms and autonomous control for search algorithms.
منابع مشابه
Adaptive Evolutionary Algorithms and Extensions to the HyFlex Hyper-heuristic Framework
HyFlex is a recently proposed software framework for implementing hyper-heuristics and domain-independent heuristic optimisation algorithms [13]. Although it was originally designed to implement hyperheuristics, it provides a population and a set of move operators of different types. This enable the implementation of adaptive versions of other heuristics such as evolutionary algorithms and iter...
متن کاملHyper-Heuristic Based on Iterated Local Search Driven by Evolutionary Algorithm
This paper proposes an evolutionary-based iterative local search hyper-heuristic approach called Iterated Search Driven by Evolutionary Algorithm Hyper-Heuristic (ISEA). Two versions of this algorithm, ISEAchesc and ISEA-adaptive, that differ in the re-initialization scheme are presented. The performance of the two algorithms was experimentally evaluated on six hard optimization problems using ...
متن کاملA novel heuristic algorithm for capacitated vehicle routing problem
The vehicle routing problem with the capacity constraints was considered in this paper. It is quite difficult to achieve an optimal solution with traditional optimization methods by reason of the high computational complexity for large-scale problems. Consequently, new heuristic or metaheuristic approaches have been developed to solve this problem. In this paper, we constructed a new heuristic ...
متن کاملA methodology for determining an effective subset of heuristics in selection hyper-heuristics
We address the important step of determining an effective subset of heuristics in selection hyper-heuristics. Little attention has been devoted to this in the literature, and the decision is left at the discretion of the investigator. The performance of a hyper-heuristic depends on the quality and size of the heuristic pool. Using more than one heuristic is generally advantageous, however, an u...
متن کاملA parallel iterated tabu search heuristic for vehicle routing problems
This paper introduces a parallel iterated tabu search heuristic for solving four different routing problems: the classical vehicle routing problem (VRP), the periodic VRP, the multi-depot VRP, and the site-dependent VRP. In addition, it is applicable to the time-window constrained variant of these problems. Using the iterated local search framework, the heuristic combines tabu search with a sim...
متن کامل